Что такое резистентность и какова ее роль, инсулинорезистентность и невосприимчивость бактерий к антибиотикам

Последствия

Пациентов с заболеваниями, вызываемыми резистентными микроорганизмами, часто приходится пролечивать не одним антибиотиком, а их комбинациями, курс длится дольше обычного, что делает лечение довольно затратным и выматывающим. Более того, не всегда оно вообще доступно, поэтому повышается и смертность. Кроме целенаправленного лечения инфекции, под угрозу ставятся и стандартные врачебные вмешательства, которые впоследствии требуют использования антибиотиков — например, некоторые полостные операции или химиотерапия.

Не нужно забывать, что человек — это и биологическое, и социальное существо, и помимо выживания ему необходимо контактировать с другими представителями общества. И здесь возникает на первый взгляд неочевидная проблема: люди с инфекциями или ослабленным иммунитетом не могут полноценно общаться с другими людьми из-за опасности заражения. В пример можно привести упомянутую выше отмену летних лагерей для детей с муковисцидозом, поводом для которой стали вспышки инфекций, вызываемых резистентными штаммами . Другое вынужденное ограничение — нахождение в отдельных боксах в инфекционных больницах. Получается, что устойчивость микроорганизмов к антибиотикам сильно влияет даже на психологическое состояние человека и его социализацию.

Группа под руководством британского финансиста Джима О`Нила провела подсчет экономических потерь, с которыми столкнется человечество к 2050 году, если всё останется по-прежнему и не получится продвинуться в решении проблемы резистентности. По этому сценарию потери трудоспособного населения к тому времени могут достичь 11–14 миллионов человек в год. В денежном выражении это означает, что кумулятивная потеря будет равна 100 трлн долларов, или средний годовой убыток составит 3 трлн долларов. К слову, весь годовой бюджет США лишь на 0,7 трлн превышает эту цифру (рис. 4) .

Рисунок 4. Если мы не сумеем притормозить всё быстрее распространяющуюся антибиотикорезистентность, то к 2050 году именно по этой причине мир будет терять до 10 миллионов человек ежегодно.

Но настоящую цену возникающей резистентности подсчитать нереально.

Факторы неспецифической резистентности

Что такое фактор резистентности? К основным факторам неспецифической резистентности относят:

  • Все анатомические барьеры (кожные покровы, мерцательный эпитилий).
  • Физиологические барьеры (Ph, температурные показатели, растворимые факторы— интерферон, лизоцим, комплемент).
  • Клеточные барьеры (прямой лизис чужеродной клетки, эндоцитоз).
  • Воспалительные процессы.

Основные свойства неспецифических факторов защиты:

  1. Система факторов, которая предшествует еще до встречи с антибиотиком.
  2. Нет строгой специфической реакции, так как антиген не распознан.
  3. Нет запоминания чужеродного антигена при вторичном контакте.
  4. Эффективность продолжается в первые 3—4 суток до включения в действие адаптивного иммунитета.
  5. Быстрая реакция на попадание антигена.
  6. Формирование быстрого воспалительного процесса и иммунного ответа на антиген.

Особенности устойчивости к дезинфицирующим средствам

Довольно давно установлено, что микробы могут формировать устойчивость к дезинфектантам. Бактериальная устойчивость к дезинфектантам представляет собой свойство микробов, которое заключается в способности их к размножению и росту в условиях прикосновения к дезинфектантам определенных концентраций. Выделяют естественную и приобретенную бактериальную устойчивость к внешним дезинфектантам.

Известны разнообразные методики исследования микробной устойчивости к дезинфектантам. Наиболее известна методика выяснения устойчивости к дезинфектантам Красильникова А.П., Гудковой Е.И. Подобные методики обеспечивают не только оценку большей части дезинфицирующих средств, но и антибактериальной активности, присущей тем или иным внешним дезинфектантам. Одной из наиболее распространенных является устойчивость бактерий к химическим веществам группы аммониевых соединений.

Для проведения исследования на выявление устойчивости к дезинфектантам применяют чистые бактериальные культуры.

Высокий уровень приоритетности

  1. Enterococcus faecium
  2. Staphylococcus aureus
  3. Helicobacter pylori
  4. Campylobacter spp.
  5. Salmonellae
  6. Neisseria gonorrhoeae

Бактерии второй группы объединены по признаку повсеместного распространения, высокой социально-экономической значимости вызываемых ими заболеваний и быстрого развития резистентности к основным антибиотикам, используемым для их эрадикации, однако в резерве еще остается один или несколько эффективных препаратов.

Enterococcus faecium

E. faecium входит в состав нормальной микрофлоры кишечника, но в то же время является условно-патогенным микроорганизмом. У ослабленных больных может вызывать инфекции мочевыводящих путей, раневую инфекцию, сепсис и эндокардит. Резистентен к аминогликозидам, пенициллинам и цефалоспоринам. Беспокойство вызывает снижение чувствительности к ванкомицину — до 72 % в отдельных популяциях. Большинство штаммов E. faecium чувствительны к линезолиду, тигециклину, даптомицину.

Staphylococcus aureus

Золотистый стафилококк, колонизирующий кожу и слизистые оболочки, способен вызывать тяжелые инфекции кожи и мягких тканей, респираторные, раневые инфекции, остеомиелит, сепсис, артрит, эндокардит. Недавнее появление и распространение ванкомицин- и гликопептид-резистентных штаммов в дополнение метициллин-резистентному S. aureus значительно сужает выбор антибактериальных препаратов, однако у возбудителя сохраняется чувствительность к аминогликозидам, эритромицину, тетрациклину, ко-тримоксазолу, линезолиду.

Helicobacter pylori

Тревогу ВОЗ вызывает увеличение случаев резистентности всем известной H. pylori к кларитромицину, что сказывается на эффективности традиционных схем эрадикационной терапии, в том числе и в России. Перед эрадикацией ВОЗ рекомендует проверить чувствительность бактерии к этому антибиотику, при выявлении устойчивости — использовать схемы без него — с метронидазолом, тетрациклином или рифаксимином, а также добавлять висмута трикалия дицитрат.

Campylobacter spp.

Бактерии рода Campylobacter удерживают первое место в мире по гастроэнтеритам, которые у большинства населения планеты протекают в легкой форме, но представляют опасность для маленьких детей, беременных, стариков и иммунокомпрометированных больных. В большинстве случаев достаточно регидратации и восстановления электролитного баланса, антибактериальную терапию назначают при тяжелом течении. Проблемой является резистентность Campylobacter к фторхинолонам, основному средству борьбы с кишечной микрофлорой, и макролидам. Устойчивость к этим препаратам, впрочем, сильно варьирует от страны к стране — от менее 5 % в Финляндии до более 90 % в Индии. В Европе и России эритромицин всё еще остается препаратом выбора. По данным микробилогических исследований, в России также еще вполне актуальны фторхинолоны. В запасе для особо тяжелых случаев с осложнениями — гентамицин и карбапенемы.

Salmonellae

Представители рода сальмонелл также вызывают набор кишечных инфекций, от легкого энтерита до брюшного тифа. Большинство этих бактерий уже резистентны к бета-лактамам, аминогликозидам, тетрациклинам, хлорамфениколу и ко-тримоксазолу. Устойчивость к фторхинолонам растет во всем мире, но пока не привела к полной бесполезности этих препаратов, они остаются антибиотиками выбора, наравне с макролидами и цефалоспоринами третьего поколения. Антибактериальной терапии требуют только тяжелые случаи кишечных инфекций и, конечно, брюшной тиф и паратифы.

Neisseria gonorrhoeae

Гонорея из неприятной, но относительно легко излечимой болезни эволюционировала в глобальную медицинскую проблему. Гонококк потерял чувствительность к пенициллинам, тетрациклинам, сульфаниламидам и фторхинолонам.

Особое опасение вызывает появление и постепенное распространение штаммов, резистентных к цефалоспоринам (цефтриаксону), долгое время служивших безотказным средством борьбы с этой инфекцией. При резистентной к стандартным схемам лечения гонорее рекомендовано использовать комбинацию азитромицина с высокими дозами цефтриаксона. В России гонококк также практически резистентен к фторхинолонам, но пока сохраняет 100 %-ную чувствительность к цефтриаксону.

Профилактика развития устойчивости к антибиотикам

С проблемой устойчивости сталкиваются как в амбулаторной практике, так и в стационарах. Так как использование антибиотиков неизбежно, проблема устойчивости будет существовать всегда.

В последние десятилетия было разработано мало новых антибактериальных препаратов, которые не смогли решить проблему устойчивости микроорганизмов. Разработка новых лекарств занимает около 10 лет, следовательно, средствами фармакологии быстро решить вопрос не получится.

1. Развитие устойчивости можно предотвратить путем более редкого использования антибиотиков и профилактики распространения бактерий.

2. Следует точно ставить диагноз и назначать рекомендуемые лабораторные и рентгенологические исследования.

3. Антибиотики назначать только в случае необходимости с учетом рекомендуемых показаний (за исключением особых случаев).

4. Если антибиотики не назначены, за пациентом ведут тщательное наблюдение.

5. Строго соблюдать гигиену рук. После каждого контакта с пациентом обрабатывать руки антисептиком. Спиртовые дез. средства предпочтительнее, чем регулярное мытье рук с мылом. Но они неэффективны в отношении некоторых микроорганизмов, в частности, Clostridium difficile является самым характерным примером. Таким образом, мытье рук водой с мылом остается обязательным в стационарах и других медицинских учреждениях.

6. Распространение устойчивых бактерий зависит от уровня гигиены. В стационарах бактерии преимущественно передаются через руки персонала и пациентов. Во многих странах климат способствует быстрому размножению бактерий, что усугубляет проблему устойчивости.

7. Уровень гигиены должен повышаться особенно в амбулаторном звене, а также в школах, где распространение инфекций среди учеников носит эпидемический характер.

Ошибка 3. Отсутствие защиты пищеварительной системы

Антибиотики смертельны не только для болезнетворных бактерий, но и для бактерий, которые колонизируют в пищеварительной системе и полезны для нашего здоровья. Результатом стерилизации организма является постантибиотическая диарея. 

В рамках защиты полезных бактерий следует принимать защитные препараты – пробиотики как в виде лекарственных препаратов, так и натуральные – йогурт, кефир. Пробиотические препараты следует принимать примерно через час после введения антибиотика. Они также могут быть использованы после окончания антибиотикотерапии для ускорения восстановления бактериальной флоры в пищеварительной системе.

Посев на флору и антибиотики

Сдерживание распространения антибиотикорезистентности

Антибиотики на сегодняшний день являются одной из самых часто применяющихся групп лекарственных средств. По данным Ассоциации международных фармацевтических производителей и ГК Ремедиум в 2014 году системные антибиотики в России занимали 4-е место в структуре амбулаторных и 2-е место в структуре госпитальных продаж готовых лекарственных средств.

Системные антибиотики в России, как и в большинстве развитых стран мира, относятся к лекарственным препаратам рецептурного отпуска, однако это требование далеко не всегда соблюдается. Недавнее исследование в рамках проводимой информационной кампании “Антибиотик надежное оружие, если цель бактериальная инфекция” показало, что 57% провизоров и фармацевтов аптечных учреждений Смоленска согласились продать антибиотик пациенту с симптомами острой респираторной инфекции без назначения врача. Более 60% опрошенных жителей Смоленска сообщили, что принимают антибиотики без назначения врача; у 38% опрошенных есть антибиотики в домашней аптечке. Таким образом, возможность свободного доступа стимулирует широкое использование антибиотиков населением для самолечения, что означает высокую вероятность их избыточного применения, ошибок при выборе препарата, дозы, длительности лечения.

В настоящее время во всем мире идет поиск альтернативных подходов к терапии инфекционных заболеваний. Одним из перспективных направлений в борьбе с инфекциями является применение бактериофагов и их компонентов. Бактериофаги природных штаммов и искусственно синтезированные генетически модифицированные фаги с новыми свойствами инфицируют и обезвреживают бактериальные клетки. Фаголизины – это ферменты, которые используются бактериофагами для разрушения клеточной стенки бактерий. Ожидается, что препараты на основе бактериофагов и фаголизинов позволят справиться с устойчивыми к АМП микроорганизмами, однако эти препараты появятся не ранее 2022-2023 гг. Параллельно с этим идет разработка препаратов на основе антибактериальных пептидов и вакцин для лечения инфекций, вызванных C. difficile, S. aureus, P. aeruginosa .

В последние годы резко возросла поддержка со стороны органов исполнительной и законодательной власти, а также Министерства здравоохранения Российской Федерации исследований, направленных на сдерживание антибиотикорезистентности. Так, например, Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии (МАКМАХ) и Федеральный научно-методический центр мониторинга резистентности к антимикробным препаратам активно занимаются разработкой страте гических направлений по данной проблеме.

На международный уровень обсуждение данной проблемы вышло на рубеже веков. В 2001 году ВОЗ опубликовала Глобальную стратегию по сдерживанию устойчивости к противомикробным препаратам, а в 2016 году вопрос борьбы с растущей угрозой антибиотикорезистентности был вынесен на повестку дня Генеральной Ассамблеи ООН.

Входящие в ООН государства в совместном заявлении обязались разработать национальные планы мер по противодействию устойчивости микроорганизмов к АМП. Это подразумевает усиление мониторинга лекарственноустойчивых инфекций и контроля за применением АМП в медицине, ветеринарии и сельском хозяйстве, а также укрепление международного сотрудничества и финансирования. Также члены организации взяли на себя обязательства ужесточить законодательное регулирование применения АМП, заниматься поиском рационального их использования (улучшение диагностики инфекций с учетом их чувствительности к препаратам) и широко внедрять меры профилактики инфекционных заболеваний (вакцинация, очистка воды, санитария, должный уровень гигиены в стационарах и на фермах) .

Резистентность к антибиотикам

Стремительный рост устойчивости бактерий к антибиотикам представляет серьезную угрозу для здоровья и жизни людей. По статистике ВОЗ, вероятность смертельного исхода заболевания у пациента, инфицированного метициллино-резистентными штаммами стафилококка (MRSA ), на 70% выше, чем у больного, инфицированного обычными, чувствительными к антибиотикам штаммами.

Во многих странах наблюдается тенденция к росту резистентности E. Coli (основного возбудителя инфекций мочевыводящих путей) к фторхинолонам и цефалоспоринам. Все чаще регистрируются случаи устойчивости бактерий к препаратам резерва для данной инфекции (карбапенемы для Klebsiella pneumonia, 3-е поколение цефалоспоринов для гонореи) и т.д. То есть, те заболевания, которые на протяжении многих лет эффективно лечились антибактериальными препаратами сегодня, снова представляют опасность для населения.

В некоторых случаях, тест на чувствительность к антибиотикам показывает частичную или полную устойчивость к большинству «классических» для данной инфекции антибиотиков.

Такая неутешительная картина связана с частым нерациональным и необоснованным применением противомикробных средств. Многие пациенты покупают лекарства не по назначению врача, а по рекомендации друзей, фармацевтов в аптеке, после просмотра рекламы или просто вспомнив, что когда-то этот препарат уже помогал. Также, у многих существуют «любимые» лекарства, которые принимаются по несколько дней при первых признаках заболевания.

Важно понимать, что самоназначение антибиотиков, самостоятельная коррекция назначенных дозировок, кратности приема и длительности курса способствует формированию и распространению бактерий с приобретенной устойчивостью к антибиотикам

Как развивается устойчивость к противомикробным препаратам?

Вторичная (приобретенная) резистентность к антибиотикам развивается за счет спонтанных мутаций в геноме микробной клетки после контакта с противомикробным средством

Важной особенностью данных мутаций является их способность «запоминаться» бактериями и передаваться следующим поколения патогенов. Это способствует быстрому распространению устойчивых штаммов в окружающей среде

Степень резистентности (сниженная чувствительность к антибиотикам или полная устойчивость), а также скорость ее развития зависит от видов и штаммов бактерий.

Быстрее всего под действием антибиотиков мутируют:

  • стафилококки (грамположительные кокки);
  • эшерихии (грамотрицательные бактерии);
  • микоплазмы (внутриклеточные возбудители);
  • протей (грам- бактерии);
  • синегнойная палочка (грамотрицательные бактерии).

Достаточно редко встречаются  антибиотикорезистентные стрептококки группы А, клостридии, сибироязвенные и гемофильные палочки.

Среди механизмов формирования устойчивости, на данный момент наиболее важными считают:

  • ферментную инактивацию антибиотика;
  • модификацию молекул-мишеней в микробной клетке;
  • способность возбудителей активно выводить антибиотик (эффлюкс);
  • снижение проницаемости микробной мембраны для лекарства.

Поскольку активное выведение и нарушение проницаемости основаны на ограничении доступа антибиотика в бактериальную клетку, их часто объединяют в один механизм резистентности.

Виды резистентности

Специалисты выделяют два вида устойчивости бактерий: приобретенный, природный. Приобретенная сопротивляемость возникает в ходе различных мутаций и передачи гена от одной бактерии другой. Стоит отметить, что человек может способствовать этим процессам. Природный вид имеется у бактерии изначально. Существуют микроорганизмы, которые по своей природе устойчивы к тому или иному препарату.

Стоит отметить, что в данный момент ученым еще не удалось создать идеальный антибиотик. К любому даже самому современному антибиотику рано или поздно будет выработана устойчивость. Например, первый в своем роде антибиотик пенициллин на сегодняшний день имеет крайне низкую эффективность.

Перед врачами и учеными стоит непростая задача, которая заключается в постоянном выпуске антибиотиков, которые были бы эффективны против всех известных микробов. В данный момент антибактериальные средства сменили уже 4 поколения.

Каким образом развивается приобретенная резистентность

Если с природной устойчивостью микробов все понятно (это является их индивидуальной особенностью), то развитие приобретенной сопротивляемости вызывает у многих вопросы. Механизмы резистентности микроорганизмов очень сложны и подразделяются на несколько видов.

В первую очередь выделяют мутацию, которая развивается после контакта с антибиотиком. Микробы передают эту способность следующим поколениям. Именно поэтому их нужно уничтожать до конца. Многие врачи говорят людям о том, что, если курс лечения будет прерван, у бактерий появится резистентность к лекарствам.

На сколько быстро будет развиваться устойчивость, зависит от следующих факторов:

  • тип патогенной флоры;
  • вида лекарственного средства;
  • индивидуальных условий.

Стоит отметить, что существуют разные виды проявления резистентного ответа к антибиотикам. Бактерии сопротивляются лекарству следующим образом:

  • усилением собственной мембраны (это мешает лекарственному средству проникать внутрь микроорганизма);
  • развитием способности к выведению лекарства (ученые и врачи называют этот процесс эффлюкс);
  • уменьшением активности воздействия препарата за счет специальных ферментов.

Как правило, серьезная резистентность возникает, когда определенный штамм микроорганизмов сопротивляется лекарству несколькими способами.

В формировании сопротивляемости большую роль играет тип бактерии. Быстрее всего к пагубному воздействию лекарства привыкают:

  • синегнойные палочки;
  • стафилококки;
  • эшерихии;
  • микоплазмы.

Антибиотики широкого спектра воздействуют одновременно на несколько видов патологических элементов. При их неправильном приеме в будущем сразу у нескольких типов инфекций будет развиваться терпимость к воздействию медикамента.

Правила забора материала для антибиотикограммы

Бактерии вызывают заболевания разных органов и обнаруживаются в разных средах организма — кровь, моча, кал, мокрота. Чтобы получить достоверные результаты, материал для исследования нужно собирать правильно.

Забор крови делает медсестра в процедурном кабинете. Для исследования берется венозная кровь, ее собирают в стерильную пробирку и сразу отправляют в лабораторию.

Мазок из зева и носоглотки берет медсестра или врач. Стерильным тампоном собирают слизь из носовых ходов, с задней стенки глотки. Тампон помещают в стерильную пробирку или сразу на питательную среду.

Влагалищную и шеечную слизь собирает гинеколог. Женщина располагается на гинекологическом кресле, а врач с помощью специального инструмента собирает слизь. Ее помещают в стерильную пробирку и отдают для исследования.

Мочу и кал собирают дома. Перед мочеиспусканием и дефекацией нужно тщательно подмыться. В стерильный контейнер собирают среднюю порцию мочи. Дефекацию рекомендуется совершать в чисто вымытое судно или другую емкость. Оттуда стерильной лопаточкой собрать кал и поместить в стерильный контейнер.

Если у человека острое заболевание, анализы делают до назначения антибактериальной терапии. На фоне даже однократного приема антибиотиков состав патогенной флоры меняется. Если же у человека длительно текущий патологический процесс, плохо поддающийся терапии, то исследование делают даже на фоне приема противомикробных препаратов.

История

Массово антибиотик стал применяться в медицине только в 40-х годах минувшего столетия. Первые устойчивые микробы появились уже через пару десятков лет.

Пенициллин-резистентные патогены, относящиеся к роду стрептококков, впервые нашли в Австралии. Это произошло в 1967 году. Немного позднее тревогу подняли американские медики. Они выявили пневмококк, абсолютно резистентный к тому же пенициллину. Второй препарат рассматриваемого класса – это тетрациклин. Открыли его в 1950 году, а в 1959 г. обнаружили шигеллу, совершенно к нему резистентную.

И наконец, такой медикамент, как Канамицин, широко применявшийся медиками США, на сегодняшний день полностью стал неэффективен. По факту к этому лекарству резистентны уже все виды микробов.

Из более свежих примеров стоит упомянуть о золотистом стафилококке, выявленном около 25 лет назад в одной из американских больниц. Данный вид обладает резистентностью к большинству групп антибиотиков. Причем в 90-х годах бактерия покинула лечебные учреждения и распространилась повсеместно. Чтобы вылечить человека от болезней, вызванных этим стафилококком, приходится использовать самые мощные из имеющихся средств, что для пациента часто заканчивается развитием тяжелейших осложнений.

Большой проблемой стал туберкулез, резистентный к самым сильным препаратам:

  • Рифампицин;
  • Изониазид.

Что такое устойчивость к антибиотикам?

Представьте себе ситуацию, когда программист борется с хакером. Чем более совершенную антивирусную программу создаст ИТ-специалист, тем более сложные вирусы будет создавать хакер. После каждого нового вируса, который проник в систему и не был обнаружен и удален существующей антивирусной программой, ИТ-специалист должен подготовить улучшенный алгоритм. Когда на рынке появляется последняя антивирусная программа, хакеры уже начинают работать над другим вирусом, устойчивым к этой программе.

Устойчивость к антибиотикам – аналогичное явление, только оно возникает, когда бактерии приобретают устойчивость. Чем лучше и эффективнее антибиотик представлен на рынке, тем больше бактерий сосредоточено на изменении своих свойств, нейтрализующих свойства нового препарата. Так возникает устойчивость к антибиотикам. 

С этой целью бактерии могут изменять свой генетический материал таким образом, что устойчивость к новому антибиотику становится их постоянной характеристикой, передаваемой будущим поколениям. Если с последующей серией лекарств, созданных учеными, бактерии приобретают устойчивость к воздействиям, то мутации в бактериальной ДНК накапливаются и образуют бактериальные штаммы, устойчивые практически к большинству антибиотиков. Этот процесс является основой бактериальной устойчивости к антибиотикам.

Устойчивость к антибиотикам

Экстра- и внехромосомная стойкость

Развитие таких особенностей объясняется генетическими элементами вне хромосомы. Это могут быть круглые ДНК-молекулы, плазмиды, на долю которых приходится до 3 % всего веса хромосомы. В них есть уникальные гены, гены иных плазмид. Свободные плазмиды находятся в бактериальной цитоплазме либо встраиваются в хромосому. За их счет вредитель обычно получает стойкость к пенициллиновому ряду, цефалоспоринам, так как в генах заложена способность формирования бета-лактамазы. Ими же объясняются ферментные соединения, обеспечивающие ацетилирование, фосфорилирование аминогликозидов. По такой логике возможно развитие стойкости к тетрациклиновому ряду за счет непроницаемости микробной клетки для вещества.

Для передачи генетической информации плазмиды прибегают к процессам изменения, трансдукции, конъюгации, транспозиции.

Возможна перекрестная резистентность. О такой говорят, когда микроскопическая форма жизни получает стойкость к разным средствам, механизмы влияния которых на микробов сходны между собой. Такое в большей степени характерно для препаратов, имеющих подобное химическое строение. В некоторых случаях перекрестное явление характерно и для веществ, чьи химические структуры отличаются достаточно сильно. Характерный пример: эритромицин и линкомицин.

Устойчивость к аминогликозидам

Аминогликозиды, используемые в клин. практике, могут быть инактивированы за счет одной из следующих реакций: ацетилирования, фосфорилирования или аденилирования, каждая из которых катализируется ферментами, контролируемыми генами, находящимися в составе R-плазмид (табл.)

Таблица. Ферменты, кодируемые плазмидами, модифицирующие аминогликозидные антибиотики

Ферменты, кодируемые плазмидами и модифицирующие
аминогликозидные антибиотики

Модифицируемые антибиотики

3′-0-фосфотрансфераза

Неомицин, канамицин

3″-0-фосфотрансфераза

Стрептомицин

5″-0-фосфотрансфераза

Рибостамицин

2″-0-фосфотрансфераза

Гентамицин

2″-0-аденилтрансфераза

Гентамицин, тобрамицин

4′-0-аденилтрансфераза

Амикацин, тобрамицин

З»-0-аденилтрансфераза

Стрептомицин, спектиномицин

6′-0-аденилтрансфераза

Стрептомицин

6′-N-ацетилтрансфераза

Амикацин, тобрамицин

2′-N-ацетилтрансфераза

Гентамицин, тобрамицин

3′-N-ацетилтрансфераза

Гентамицин,тобрамицин

Предполагается, что ферменты, модифицирующие аминогликозидные антибиотики, локализованы в клетке на внутренней мембране, т. к. они могут быть освобождены в среду при отмывании холодной водой бактерий, обработанных сахарозой и трис-ЭДТА. Присутствие на внутренней мембране бактерий ферментов, модифицирующих аминогликозидные антибиотики, предотвращает, вероятно, их транспорт к рибосомам, представляющим мишень действия этих антибиотиков. С другой стороны, предполагалось, что модификация аминогликозидного антибиотика приводит к его инактивации. Накапливается все больше данных о возможной роли модифицирующих ферментов в нарушении транспорта аминогликозидных антибиотиков в клетку. Действительно, имеются результаты, указывающие, что полная инактивация антибиотика под влиянием модифицирующего фермента не наступает, а вместе с тем бактерия оказывается устойчивой к его действию. Уровень устойчивости к аминогликозидным антибиотикам, обусловленный R-плазмидами (см. R-фактор), колеблется от 20 до 5000 мкг/мл.

Эти колебания определяются многими причинами. Известно, что штаммы R+-бактерий, инактивирующие стрептомицин и канамицин путем фосфорилирования, характеризуются более высоким уровнем устойчивости к этим антибиотикам, чем этот же штамм, несущий другую плазмиду и инактивирующий антибиотики путем аденилирования. Различия в уровнях устойчивости к аминогликозидным антибиотикам могут быть обусловлены разным уровнем ферментативной активности, а именно: повышение последней может быть результатом увеличения в клетке числа копий плазмиды и, следовательно, числа генов, кодирующих модифицирующий фермент. Снижение уровня устойчивости к антибиотику может возникнуть в результате нарушения процесса выражения гена, определяющего устойчивость к данному антибиотику. Это часто наблюдают при переносе R-плазмиды из бактерии одного вида в бактерию другого вида. Расшифровка биохим, механизмов инактивации антибиотиков послужила стимулом для поиска новых препаратов, устойчивых к действию известных ферментов, определяющих резистентность бактерий. Так, напр., гентамицин, тобрамицин, ливидомицин А и Б активны в отношении бактерий, устойчивых к неомнцину и канамицину. Это определяется тем, что ферменты фосфорилирования, инактивирующие неомицин и канамицин, модифицируют 3′-OH группу аминогексозы, к-рая отсутствует в молекуле гентамицина и других упомянутых антибиотиков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector