Белки
Содержание:
- Роль белков при похудении
- Ферменты
- Источники белков: животные и растительные белки
- 3. Внутриклеточные регуляторные белки
- Где больше всего содержится белка
- Низкое потребление белка и последствия
- Внутриклеточные регуляторные белки
- Пищевая и биологическая ценность белков
- Функции белков.
- Функции белков в клетке
- Где содержится много белка в еде
- Недостаток белков
Роль белков при похудении
Итак, ни для кого, я надеюсь, не секрет, что белковые продукты имеют относительно низкий по сравнению с углеводными. Потребляя пищу, богатую белками, вы тем самым застраховываете себя от жиронакопления и набора лишнего веса, минуя резкий подъем сахара в крови и выброса большого количества инсулина.
Также белковые продукты разгоняют обмен веществ в состоянии покоя, поддерживая и питая вашу мышечную массу, а это приводит к большему потреблению калорий вашим организмом в целом. То есть, простыми словами, регулярно потребляя такие продукты как: мясо животных, рыбу, молочные продукты, яйца и другие источники полноценного белка, – вы расходуете больше калорий, чем ваша подруга Маша, которая питается тортиками и булочками.
Еще белковые продукты требуют больше времени на переваривание в отличие от углеводов, что помогает долгое время не ощущать чувство голода и оставаться сытыми, а это в свою очередь спасает от переедания и частых вредных перекусов в течение дня.
Белковые продукты зачастую имеют среднюю либо низкую калорийность. Если вы в процессе похудения, то выбирайте мяса нежирных сортов птицы и животных: индейка, курица, постная говядина, телятина, кролик. Это поможет вам всегда быть в форме, при этом получая все незаменимые аминокислоты и витамины, содержащиеся в этих продуктах. Также отдавайте предпочтение маложирным молочным продуктам: творог 0-5% жирности, сметана до 15% жирности, сыр до 25%, молоко и кефир до 2,5%.
Ферменты
Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом.
Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты).
Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).
Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».
Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.
Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.
Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.
При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.
Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.
Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами, если тормозят — ингибиторами.
Источники белков: животные и растительные белки
Источники белка растительного происхождения:
- бобовые – соя, фасоль, чечевица;
- орехи;
- картофель;
- крупы – манка, пшено, перловка, гречка.
Нормы белка для взрослого человека
Потребность человеческого организма в белке напрямую зависит от его физической активности. Чем больше мы двигаемся, тем более быстро протекают в нашем организме все биохимические реакции. Людям, которые регулярно тренируются, требуется белка почти вдвое больше, чем среднестатистическому человеку. Недостаток белка для людей, занимающихся спортом опасен «иссушением» мышц и истощением всего организма!
В среднем норма белка для взрослого человека рассчитывается исходя из коэффициента 1 г белка на 1 кг веса, т. е. примерно 80–100 г для мужчин, 55–60 г для женщин. Спортсменам-мужчинам рекомендуется увеличивать количество потребляемого белка до 170–200 г в сутки.
Правильное белковое питание для организма
Правильное питание для насыщения организма белком заключается в сочетании белков животного и растительного происхождения. Степень усвоения белка из продуктов питания зависит от его происхождения и способа термической обработки.
Так, организмом усваиваются примерно 80% от общего поступления с пищей белков животного происхождения и 60% – растительного. В продуктах животного происхождения содержится большее количество белка на единицу массы продукта, нежели в растительных. Кроме того, в состав «животных» продуктов входят все аминокислоты, а растительные продукты в этом отношении считаются неполноценными.
Основные правила питания для лучшего усвоения белка:
- Щадящий способ кулинарной обработки – варка, приготовление на пару, тушение. Жарка должна быть исключена.
- Рекомендуется употреблять больше рыбы и птицы. Если очень хочется мяса – выбирайте говядину.
- Следует исключить из рациона бульоны, они жирны и вредны. В крайнем случае можно приготовить первое блюдо, используя «вторичный бульон».
Особенности белкового питания для роста мышц
Спортсменам, активно набирающим мышечную массу, следует придерживаться всех вышеизложенных рекомендаций. Большую часть их рациона должны составлять белки животного происхождения. Их следует употреблять в пищу совместно с растительными белковыми продуктами, из которых особое предпочтение нужно отдать сое.
Читайте подробнее какая пища богатая белком.
Необходимо также проконсультироваться с врачом и рассмотреть возможность употребления специальных протеиновых напитков, процент усвоения белка из которых равен 97–98%. Специалист индивидуально подберёт напиток, рассчитает верную дозировку. Это станет приятным и полезным белковым дополнением к силовой тренировке.
Особенности белкового питания, желающим похудеть
Желающим похудеть следует употреблять в пищу животные и растительные белковые продукты
Важно разделить их приём, т. к
время их усвоения разное. Следует отказаться от жирных мясных продуктов, не стоит злоупотреблять картофелем, нужно отдать предпочтение крупам со средним содержанием белка.
Не стоит вдаваться в крайности и «садиться» на белковую диету. Она не всем подходит, ведь полное исключение углеводов приведёт к снижению работоспособности и энергии. Достаточно есть продукты, содержащие углеводы, утром – это придаст энергии в течение дня, во второй половине дня употребляйте белковую нежирную пищу. Для восполнения недостатка энергии вечером организм начнёт сжигать жировые отложения, вместе с тем процесс этот будет безопасен для здоровья организма.
Обязательно включайте нужные и правильно приготовленные белковые продукты в свой рацион. Для организма белок – основной строительный материал! Вкупе с регулярными тренировками, он поможет вам построить красивое спортивное тело!
3. Внутриклеточные регуляторные белки
Белки регулируют процессы, происходящие внутри клеток, при помощи нескольких механизмов:
- взаимодействия с молекулами ДНК (транскрипционные факторы)
- при помощи фосфорилирования (протеинкиназы) или дефосфорилирования (протеинфосфатазы) других белков
- при помощи взаимодействия с рибосомой или молекулами РНК (факторы регуляции трансляции)
- воздействия на процесс удаления интронов (факторы регуляции сплайсинга)
- влияния на скорость распада других белков (убиквитины и др.)
3.1. Белки-регуляторы транскрипции
Транскрипционный фактор
— это белок, который, попадая в ядро, регулирует транскрипцию ДНК, то есть считывание информации с ДНК на мРНК (синтез мРНК по матрице ДНК). Некоторые транскрипционные факторы изменяют структуру хроматина, делая его более доступным для РНК-полимераз. Существуют различные вспомогательные транскрипционные факторы, которые создают нужную конформацию ДНК для последующего действия других транскрипционных факторов. Еще одна группа транскрипционных факторов — это те факторы, которые не связываются непосредственно с молекулами ДНК, а объединяются в более сложные комплексы с помощью белок-белковых взаимодействий.
3.2. Факторы регуляции трансляции
Трансляция
— синтез полипептидных цепей белков по матрице мРНК, выполняемый рибосомами. Регуляция трансляции может осуществляться несколькими способами, в том числе и с помощью белков-репрессоров, которые, связываются с мРНК. Известно много случаев, когда репрессором является белок, который кодируется этой мРНК. В этом случае происходит регуляция по типу обратной связи (примером этого может служить репрессия синтеза фермента треонил-тРНК-синтетазы).
3.3. Факторы регуляции сплайсинга
Внутри генов эукариот есть участки, не кодирующие аминокислот. Эти участки называются интронами. Они сначала переписываются на пре-мРНК при транскрипции, но затем вырезаются особым ферментом. Этот процесс удаления интронов, а затем последующее сшивание концов оставшихся участков называют сплайсингом (сшивание, сращивание). Сплайсинг осуществляется с помощью небольших РНК, обычно связанных с белками, которые называются факторами регуляции сплайсинга. В сплайсинге принимают участие белки, обладающие ферментативной активностью. Они придают пре-мРНК нужную конформацию. Для сборки комплекса(сплайсосомы) необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в составе этого комплекса есть белки, обладающие АТФ-азной активностью.
Существует альтернативный сплайсинг. Особенности сплайсинга определяются белками, способными связываться с молекулой РНК в областях интронов или участках на границе экзон-интрон. Эти белки могут препятствовать удалению одних интронов и в то же время способствовать вырезанию других. Направленная регуляция сплайсинга может иметь значительные биологические последствия. Например, у плодовой мушки дрозофилы альтернативный сплайсинг лежит в основе механизма определения пола.
3.4. Протеинкиназы и протеинфосфатазы
Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.
Протеинкиназы регулируют активность других белков путем фосфолирования — присоединения остатков фосфорной кислоты к остаткам аминокислот, имеющих гидроксильные группы. При фосфорилировании обычно изменяется функционирование данного белка, например, ферментативная активность, а также положение белка в клетке.
Существуют также протеинфосфатазы — белки,которые отщепляют фосфатные группы. Протеинкиназы и протеинфосфатазы регулируют обмен веществ, а также передачу сигналов внутри клетки. Фосфорилирование и дефосфорилирования белков — один из главным механизмов регуляции большинства внутриклеточных процессов.
Цикл активации G-белка под действием рецептора.
Синхронизация выполнена 18.07.11 07:59:14
Где больше всего содержится белка
Также стоит разобраться, где больше всего содержится белка в продуктах растительного происхождения. Самые ценные из растительных белков содержатся в гречихе, бобовых, картофеле, рисе и ржаном хлебе.
Сравнительно выгодны в данном отношении мучные изделия с творогом (вареники, сочники) или мясом (пельмени, пирожки с мясом и т. д.), тогда как сочетание теста с рисом и другими крупами менее оправданно.
Биологическая ценность белков возрастает при сочетании зерновых, бобовых и мясомолочных продуктов. Для повышения белковой полноценности питания выпускают хлебобулочные изделия, обогащенные обезжиренным молоком или молочной сывороткой, яичные и молочные макаронные изделия. Также существуют специальные сухие концентраты с высоким содержанием легкоусвояемых белков, используемые для питания тяжелобольных.
Впрочем, в отдельных случаях возникает необходимость ограничить потребление белка, например при недостаточности почек или печени. Для этого используют специальные малобелковые крупяные, макаронные и хлебобулочные изделия.
Низкое потребление белка и последствия
При нехватке белка:
- Процессы старения идут в два раза быстрее.
- Организм начинает синтезировать белок, расщепляя собственные мышцы и ткани органов, в первую очередь страдает сердце.
- Замедляется обмен веществ из-за потери мышечной массы, и начинает увеличиваться жировая масса тела.
- Страдает иммунная функция: организм слабеет и становится уязвим к различным заболеваниям.
- Понижается кровяное давление, так как стенки сосудов растягиваются.
- Развивается малокровие, а как следствие этого появляется синдром хронической усталости.
- Нарушается работа желудочно-кишечного тракта, так как стенки органов пищеварения становятся вялыми.
- Нарушаются функции печени, поджелудочной железы, увеличивается риск развития ишемической болезни сердца.
Как вы видите роль белков в организме человека
достаточно велико. Эти доводы дают веские основания полагать, что белки должны составлять как минимум 40% вашего рациона питания, а если вы регулярно тренируетесь или занимаетесь каким-либо видом спорта, то эта цифра автоматически увеличивается до 50% .
Я надеюсь, что данная статья была для вас полезной. Теперь вы знаете, что недооценивать роль белков в питании
не стоит. И если вы до этого потребляли мало белковых продуктов и не понимали, почему у вас нет результатов от занятий в тренажерном зале или выпадают волосы, то сейчас у вас появился хороший шанс пересмотреть ваш рацион питания и устранить изъяны.
С вами была искренне Ваша, Скрипник Янелия!
Белки в организме человека — это основной материал для развития и роста всех без исключения клеток. Самые разнообразные функции белка в организме не компенсируются другими элементами, поскольку именно в них содержаться незаменимые аминокислоты. Самая важная роль белков в организме заключается в том, что они участвуют в репликации молекул ДНК и РНК.
Внутриклеточные регуляторные белки
Белки регулируют процессы, происходящие внутри клеток, при помощи нескольких механизмов:
- взаимодействия с молекулами ДНК (транскрипционные факторы);
- при помощи фосфорилирования (протеинкиназы) или дефосфорилирования (протеинфосфатазы) других белков;
- при помощи взаимодействия с рибосомой или молекулами РНК (факторы регуляции трансляции);
- воздействия на процесс удаления интронов (факторы регуляции сплайсинга);
- влияния на скорость распада других белков (убиквитины и др.).
Белки-регуляторы транскрипции
Транскрипционный фактор
— это белок, который, попадая в ядро , регулирует транскрипцию ДНК, то есть считывание информации с ДНК на мРНК (синтез мРНК по матрице ДНК). Некоторые транскрипционные факторы изменяют структуру хроматина, делая его более доступным для РНК-полимераз. Существуют различные вспомогательные транскрипционные факторы, которые создают нужную конформацию ДНК для последующего действия других транскрипционных факторов. Еще одна группа транскрипционных факторов — это те факторы, которые не связываются непосредственно с молекулами ДНК, а объединяются в более сложные комплексы с помощью белок-белковых взаимодействий.
Факторы регуляции трансляции
Трансляция
— синтез полипептидных цепей белков по матрице мРНК, выполняемый рибосомами. Регуляция трансляции может осуществляться несколькими способами, в том числе и с помощью белков-репрессоров, которые, связываются с мРНК. Известно много случаев, когда репрессором является белок, который кодируется этой мРНК. В этом случае происходит регуляция по типу обратной связи (примером этого может служить репрессия синтеза фермента треонил-тРНК-синтетазы).
Факторы регуляции сплайсинга
Внутри генов эукариот есть участки, не кодирующие аминокислот. Эти участки называются интронами . Они сначала переписываются на пре-мРНК при транскрипции, но затем вырезаются особым ферментом. Этот процесс удаления интронов, а затем последующее сшивание концов оставшихся участков называют сплайсингом (сшивание, сращивание). Сплайсинг осуществляется с помощью небольших РНК, обычно связанных с белками, которые называются факторами регуляции сплайсинга. В сплайсинге принимают участие белки, обладающие ферментативной активностью. Они придают пре-мРНК нужную конформацию. Для сборки комплекса (сплайсосомы) необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в составе этого комплекса есть белки, обладающие АТФ-азной активностью.
Существует альтернативный сплайсинг . Особенности сплайсинга определяются белками, способными связываться с молекулой РНК в областях интронов или участках на границе экзон-интрон. Эти белки могут препятствовать удалению одних интронов и в то же время способствовать вырезанию других. Направленная регуляция сплайсинга может иметь значительные биологические последствия. Например, у плодовой мушки
Существуют
несколько видов защитных функций белков:
Физическая
защита. В ней принимает участие коллаген —
белок, образующий основу межклеточного
вещества соединительных тканей (в том
числе костей, хряща, сухожилий и глубоких
слоёв кожи (дермы)); кератин,
составляющий основу роговых щитков,
волос, перьев, рогов и др. производныхэпидермиса.
Обычно такие белки рассматривают как
белки со структурной функцией. Примерами
этой группы белков служат фибриногены итромбины ,
участвующие в свёртывании крови.
Химическая
защита. Связывание токсинов белковыми
молекулами может обеспечивать их
детоксикацию. Особенно важную роль в
детоксикации у человека играют ферменты печени,
расщепляющие яды или переводящие их в
растворимую форму, что способствует
их быстрому выведению из организма .
Иммунная
защита. Белки, входящие в состав крови и
других биологических жидкостей,
участвуют в защитном ответе организма
как на повреждение, так и на атаку патогенов.
Белки системы
комплемента и антитела (иммуноглобулины)
относятся к белкам второй группы; они
нейтрализуют бактерии, вирусы или
чужеродные белки. Антитела, входящие
в состав адаптативной
иммунной системы,
присоединяются к чужеродным для данного
организма веществам, антигенам,
и тем самым нейтрализуют их, направляя
к местам уничтожения. Антитела
могутсекретироваться в
межклеточное пространство или
закрепляться в мембранах
специализированных В-лимфоцитов,
которые называютсяплазмоцитами .
В то время как ферменты имеют ограниченное
сродство к субстрату, поскольку слишком
сильное присоединение к субстрату
может мешать протеканию катализируемой
реакции, стойкость присоединения
антител к антигену ничем не ограничена .
Пищевая и биологическая ценность белков
Нужно учитывать не только количество, но и качество — биологическую ценность белков, которая зависит от содержания в нем аминокислот. Всего в состав белков может входить свыше 20 аминокислот, но только восемь из них не образуются в организме, поэтому должны поступать с пищей. Такие аминокислоты называют незаменимыми.
Чтобы пищевой белок усваивался полностью, аминокислоты должны находиться в нем в определенном соотношении. Недостаток даже одной аминокислоты способен помешать полноценному участию всех остальных в построении белков организма. Пищевая и биологическая ценность белков рассчитывается по специальным таблицам.
Функции белков.
Белки в клетке выполняют важные и многообразные функции. Прежде всего они выполняют строительную функцию
. Из белков состоят мембраны клеток и клеточных органоидов. У высших животных в основном из белков состоят стенки кровеносных сосудов, сухожилия, хрящи и т. д.
Громадное значение имеет каталитическая функция белков
. Из курса химии вам известно, что скорость химических реакций зависит от свойств реагирующих веществ, от их концентрации и температуры, при которой идет реакция. Химическая активность веществ в живой клетке, как правило, невелика. Концентрации их в клетке большей частью незначительны. Температура клеточной среды невысокая. Таким образом, реакции в клетке должны были бы протекать очень медленно. Между тем реакции в клетке идут с большими скоростями. Это достигается благодаря наличию в клетке катализаторов. Клеточные катализаторы называются ферментами. Каталитическая активность ферментов исключительно велика. Они ускоряют реакции в десятки, сотни миллионов раз. По химической структуре ферменты — белки. В большинстве случаев ферменты катализируют превращения веществ, размеры молекул которых по сравнению с размерами макромолекулы фермента очень малы. Например, фермент ката-лаза имеет молекулярную массу 250000, а пероксид водорода (Н 2 О 2), распад которого катализирует каталаза, всего 34. Такое соотношение между размерами фермента и веществом, на которое он действует, наводит на мысль, что каталитическая активность фермента определяется не всей его молекулой, а только небольшим ее участком — активным центром фермента. Как известно, реакция между веществами происходит при условии тесного сближения их молекул. Возможность сближения фермента и вещества происходит благодаря геометрическому соответствию структур активного центра фермента и молекулы вещества. Они подходят друг к другу, «как ключ к замку». При денатурации фермента его каталитическая активность исчезает, так как нарушается структура активного центра.
Почти каждая химическая реакция в клетке катализируется особым ферментом. Число различных реакций, протекающих в клетке, достигает нескольких тысяч. Соответственно в клетке обнаружено несколько тысяч разных ферментов.
Кроме строительной и каталитической функций, важна сигнальная функция белков
. В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.
Белкам присуща также двигательная функция
. Движение — одно из проявлений жизненной активности. Все виды движения, к которым способны клетки у высших животных, в том числе и сокращение мышц, а также мерцание ресничек у простейших, движения жгутиков, выполняют особые сократительные белки.
Белки выполняют также транспортную функцию
. Они способны присоединять различные вещества и переносить их из одного места клетки в другое. Белок крови гемоглобин присоединяет кислород и разносит его ко всем тканям и органам тела.
Большое значение имеет защитная функция белков
. При введении чужеродных белков или клеток в организм в нем происходит выработка особых белков, которые связывают и обезвреживают чужеродные клетки и вещества.
Следует отметить, наконец, энергетическую функцию белков
. Белки распадаются в клетке до аминокислот. Часть аминокислот используется для синтеза белков, часть же подвергается глубокому расщеплению, в ходе которого освобождается энергия. При полном расщеплении 1 г белка освобождается 17,6 кДж.
О громадном значении белков для жизни догадывались давно. Сто лет назад Ф. Энгельс писал, что «жизнь есть форма существования белковых тел». Эта фраза стала крылатой, в ней подчеркивается решающее значение белков для жизни. Данные современной биологии полностью подтверждают этот вывод.
Функции белков в клетке
- Строительная (пластическая) функция белковых молекул является одной из важнейших.Они являются составным компонентом клеточных мембран и органел. Стенки кровеносных сосудов, сухожилия, хрящи высших животных также состоят в основном из белка.
- Двигательная функция обеспечивается особенными сократительными белками, благодаря которым осуществляются движения жгутиков и ресничек, перемещение хромосом во время деления клеток, сокращение мускулатуры, движения органов растений и т.п., пространственные изменения положения различных структур организма.
- Транспортная функция белков обеспечивается их способностью связывать и переносить с течением крови химические соединения.
Пример 2
Белок крови гемоглобин переносит кислород из лёгких в клетки других органов и тканей (аналогичную функцию в мышцах выполняет миоглобин).
Белки сыворотки крови переносят липиды и жирные кислоты, различные биологически активные вещества.
Молекулы белков, входящих в состав плазматической мембраны, берут участие в транспорте веществ как в клетку, так и из неё.
Белки выполняют и защитную функцию. Как ответ на проникновение внутрь чужеродных веществ (антигенов – белков или высокомолекулярных полисахаридов бактерий, вирусов) в клетке вырабатываются особенные белки – иммуноглобулины (антитела), которые нейтрализуют чужеродные вещества и осуществляют иммунологичную защиту организма.
Благодаря функционированию иммунной системы организма обеспечивается распознавание антигенов антигенным детерминантам (характерным участкам их молекул). Благодаря этому специфически связываются и обеззараживаются чужеродные вещества за.
Замечание 5
Внешнюю защитную функцию могут выполнять также и белки, токсические для других организмов ( белок яда змей).
Белкам свойственна также сигнальная функция. В поверхность клеточной мембранны встроены молекулы белков, которые в ответ на действия факторов внешней среды способны к изменению свей третичной структуры. Так происходит восприятие сигналов из внешней среды и передача команд в клетку.
Регуляторная функция свойственна белкам-гормонам, которые влияют на обмен веществ. Гормоны поддерживают постоянную концентрацию веществ в крови, учавствуют в росте размножении и других жизненно важных процессах.
Пример 3
Одним из наиболее известных гормонов является инсулин, понижающий содержание сахара в крови. В случае стойкой недостаточности инсулина содержание сахара в крови увеличивается и развивается сахарны диабет. Главными регуляторами биохимических процессов в организме могут быть и многочисленные белки-ферменты (каталитическая функция).
Белки являются и энергетическим материалом. При расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии, необходимой для большинства жизненно важных процессов в клетке.
Где содержится много белка в еде
Необходимо знать, где содержится много белка для того, чтобы правильно формировать состав своего дневного рациона. Сведения о содержании белка в основных продуктах питания приведены в таблице. Из неё вы сможете получить основные сведения о том, где содержатся белки в еде на вашем столе.
Таблица — Содержание белка в 100 граммах съедобной части продуктов:
Количество блека, г |
Пищевые продукты |
Очень большое (более 15) |
Творог нежирный, мясо животных и птиц, большая часть сортов рыбы, морепродукты, яичный белок, соя, горох, фасоль, орехи |
Большое (10-15) |
Сыр, творог жирный, свинина мясная и жирная, цельные яйца, крупа манная, гречневая, овсяная, пшено, мука пшеничная, макароны |
Умеренное (5-9,9) |
Хлеб ржаной и пшеничный, крупа перловая, рис, зеленый горошек |
Малое (2-4,9) |
Молоко, кефир, сливки, сметана, мороженое сливочное, шпинат, капуста цветная, картофель |
Очень малое (0,4-1,9) |
Масло сливочное, почти все овощи, фрукты, ягоды и грибы |
Чтобы быстро рассчитать, сколько белка вы получите, съев то или иное блюдо, следует знать, что 10 граммов белка содержится в следующих продуктах:
- 50 граммов говяжьего или куриного мяса, творога жирностью 4 %;
- 55 граммов ставриды, скумбрии;
- 60 граммов трески, хека, карпа;
- 70 граммов свинины мясной, творога жирного;
- 80 граммов цельных яиц (две штуки без скорлупы), гречневой крупы;
- 85 граммов вареной колбасы;
- 90 граммов сосисок, овсяной крупы, пшена, макаронных изделий;
- 100 граммов гороха отварного
- 100 граммов манной и ячневой крупы;
- 125 граммов хлеба пшеничного;
- 140 граммов риса;
- 200 граммов зеленого горошка;
- 350 граммов молока, сметаны, кефира жирного;
- 500 граммов картофеля, капусты белокочанной;
- 700 граммов моркови, свеклы;
- 2,5 килограмма яблок, груш.
Недостаток белков
Белковая недостаточность может развиться по следующим причинам:
- Основная причина – недостаточное поступление белков с пищей. Это может случиться, если человек сидит на диете, если его рацион питания содержит их в небольшом количестве.
- Заболевания, препятствующие поступлению пищи: перекрытие пищевода, воспаление слизистой оболочки рта.
- Заболевания ЖКТ и их последствия, из-за которых затруднено всасывание питательных веществ.
- Белки расходуются при ожогах большой площади тела, серьёзных ранах, онкологических заболеваниях.
- Проблемы с гормонами.
Симптомы, которые могут указывать на возникновение белковой недостаточности:
- уменьшение массы тела;
- бледность, сухость кожи, при тяжёлой недостаточности она становится дряблой и вялой;
- частые диареи;
- снижение либидо, отсутствие менструаций у женщин;
- раздражительность, невнимательность, постоянная усталость, плохой аппетит;
- снижение иммунитета, человека преследуют инфекционные заболевания.
Лёгкая степень нехватки белка устраняется пересмотром рациона и включением в него всех необходимых аминокислот из расчёта на идеальный вес пациента.