Основные функции и особенности строения клеточной мембраны

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Общие характеристики

Мембраны представляют собой довольно динамичные структуры, которые широко варьируются в зависимости от типа клеток и состава их липидов. Мембраны модифицируются в соответствии с этими характеристиками следующим образом:

Текучесть мембраны

Мембрана не является статичной сущностью, она ведет себя как жидкость. Степень текучести структуры зависит от нескольких факторов, включая липидный состав и температуру, при которой мембраны подвергаются воздействию..

Когда все связи, которые существуют в углеродных цепях, насыщены, мембрана имеет тенденцию вести себя как гель, и ван-дер-ваальсовы взаимодействия стабильны. Наоборот, когда есть двойные связи, взаимодействия меньше, и текучесть увеличивается

Кроме того, существует влияние длины углеродной цепи. Чем дольше, тем больше взаимодействий с соседями, что увеличивает беглость. Когда температура увеличивается, текучесть мембраны также увеличивается.

Холестерин играет незаменимую роль в регуляции текучести и зависит от концентрации холестерина. Когда хвосты длинные, холестерин действует как иммобилайзер, снижая текучесть. Это явление происходит при нормальном уровне холестерина.

Эффект изменяется, когда концентрации холестерина ниже. При взаимодействии с хвостами липидов, эффект, который вызывает их разделение, снижает текучесть.

кривизна

Как и текучесть, кривизна мембраны определяется липидами, которые составляют каждую мембрану в частности.

Кривизна зависит от размера головки липида и хвоста. Те, у кого длинные хвосты и большие головы, плоские; те с относительно меньшими головами имеют тенденцию изгибаться намного больше, чем предыдущая группа.

Это свойство важно при явлениях мембранной эвагинации, образования пузырьков, микроворсинок и др.

Распределение липидов

Два «листа», которые образуют каждую мембрану — мы помним, что это бислой — не имеют одинакового состава липидов внутри нее; поэтому говорят, что распределение асимметрично. Этот факт имеет важные функциональные последствия.

Конкретным примером является состав плазматической мембраны эритроцитов. В этих клетках крови сфингомиелин и фосфатидилхолин (которые образуют мембраны с большей относительной текучестью) обнаруживаются при обращении к внешней стороне клетки.

Липиды, которые имеют тенденцию образовывать более жидкие структуры, сталкиваются с цитозолем. За этим паттерном не следует холестерин, который более или менее однородно распределен в обоих слоях..

Структура и состав

Основным компонентом мембран являются фосфолипиды. Эти молекулы амфипатические, имеют полярную и аполярную зоны. Полярность позволяет им взаимодействовать с водой, в то время как хвост представляет собой гидрофобную углеродную цепь.

Ассоциация этих молекул происходит спонтанно в бислое, причем гидрофобные хвосты взаимодействуют друг с другом, а головки направлены наружу..

В клетке маленького животного мы находим невероятно большое количество липидов, порядка 109 молекулы. Мембраны имеют толщину около 7 нм. Гидрофобное внутреннее ядро, почти во всех мембранах, занимает толщину от 3 до 4 нм..

Жидкая мозаичная модель

Модель, которая в настоящее время обрабатывается биомембранами, известна как «жидкая мозаика», сформулированная в 70-х годах исследователями Сингером и Николсоном. Модель предполагает, что мембраны состоят не только из липидов, но также из углеводов и белков. Термин мозаика относится к указанной смеси.

Лицо мембраны, которая обращена к внешней стороне клетки, называется экзоплазматическим лицом. Напротив, внутренняя сторона цитозольная.

Эта же номенклатура применяется к биомембранам, составляющим органеллы, за исключением того, что экзоплазматическая поверхность в этом случае указывает на внутреннюю часть клетки, а не на внешнюю..

Липиды, которые составляют мембраны, не являются статичными. Они имеют возможность перемещаться с определенной степенью свободы в определенных регионах через структуру.

Мембраны состоят из трех основных типов липидов: фосфоглицериды, сфинголипиды и стероиды; все они амфипатические молекулы. Далее мы подробно опишем каждую группу:

Типы липидов

Первая группа, состоящая из фосфоглицеридов, происходит из глицерол-3-фосфата. Хвост, имеющий гидрофобный характер, состоит из двух цепей жирных кислот. Длина цепей различна: они могут содержать от 16 до 18 атомов углерода. Они могут иметь одинарные или двойные связи между атомами углерода.

Подклассификация этой группы дается типом головы, которую они представляют. Фосфатидилхолины являются наиболее распространенными, а голова содержит холин. В других типах различные молекулы, такие как этаноламин или серин, взаимодействуют с фосфатной группой..

Другой группой фосфоглицеридов являются плазмалогены. Липидная цепь связана с глицерином сложноэфирной связью; в свою очередь, существует углеродная цепь, связанная с глицерином посредством эфирной связи. Их довольно много в сердце и мозге.

Сфинголипиды происходят из сфингозина. Сфингомиелин является обильным сфинголипидом. Гликолипиды состоят из головок, образованных из сахаров.

Третий и последний класс липидов, которые составляют мембраны, являются стероидами. Это кольца из углерода, объединенные в группы по четыре. Холестерин — стероид, присутствующий в мембранах и особенно распространенный у млекопитающих и бактерий..

Липидные плоты

Существуют специфические зоны мембран эукариотических организмов, где сосредоточены холестерин и сфинголипиды. Эти домены также известны как рафт липид.

В этих регионах они также несут различные белки, функции которых являются клеточной передачи сигналов. Считается, что липидные компоненты модулируют белковые компоненты в рафтах.

Мембранные белки

Внутри плазматической мембраны закреплены ряд белков. Они могут быть цельными, закрепленными на липидах или расположенными на периферии..

Интегралы проходят через мембрану. Следовательно, они должны обладать гидрофильными и гидрофобными белковыми доменами, чтобы иметь возможность взаимодействовать со всеми компонентами..

В белках, которые прикреплены к липидам, углеродная цепь закреплена в одном из слоев мембраны. Белок действительно не проникает в мембрану.

Наконец, периферические не взаимодействуют напрямую с гидрофобной зоной мембраны. Напротив, они могут быть соединены посредством интегрального белка или полярными головками. Они могут быть расположены с обеих сторон мембраны.

Процент белков в каждой мембране варьируется в широких пределах: от 20% в нейронах до 70% в митохондриальной мембране, поскольку для осуществления метаболических реакций, которые там происходят, требуется большое количество белковых элементов..

Функции клеточной мембраны

  1. Барьерная или защитная. Мембрана защищает содержимое клетки, создавая своеобразный барьер. Не позволяет проникать вредным веществам через стенки. Контролирует постоянство структуры клетки и оберегает от вредоносных молекул. При этом, в зависимости от ситуации, мембрана может вести себя активно или пассивно. Может проявлять активность в выборе или отторжении.
  2. Транспортная. Обеспечивает доставку полезных веществ внутрь клетки, происходит межклеточный обмен полезными веществами и поступает информация извне.
  3. Матричная. Мембрана строго разграничивает клетки,
  4. Механическая. Регулирует разграничение клеток между собой, поддерживает правильность их соединения. Здесь основная нагрузка ложится на стенки клетки. У животных активно принимает участие межклеточное вещество.
  5. Энергетическая. Через белок, содержащийся в клеточной мембране происходит процесс энергообмена.
  6. Рецепторная. Основную роль выполняют белки, которые выполняют роль рецепторов в клеточной мембране. Они отвечают за доставку сигналов в клетку от гормонов и нейромедиаторов. Это позволяет поддерживать стабильный гормональный фон и способствует беспрепятственному прохождению нервных импульсов.
  7. Ферментативная. Часть белков принимают участие в данной функции. Так, например, происходит синтез в эпителии кишечника.
  8. Маркировочная. Антиген. Присутствующий на мембране, действует как маркер-выделитель. Благодаря ему происходит распознавание клетки. Роль таких выделителей исполняют гликопротеины, играющие роль своеобразных антенн. У каждой клеточки свое обозначение, по которым происходит объединение в структуры или отторжение как чужеродных и вредных.

Клеточный обмен может происходить 3 способами

  1. Фагоцитоз. Обмен внутри клеток, главные участники которого – фагоциты. Они захватывают полезные вещества и перерабатывают их.
  2. Пиноцитоз. Здесь активной является сама мембранная клетка, которая специальными ловит капельку жидкости. Формируется небольшой пузырек, который постепенно втягивается в мембрану.
  3. Экзоцитоз. Прямо противоположный процесс, при котором из клетки уходит жидкость через стенки мембраны.

Функции

В зависимости от расположения и особенностей все мембраны выполняют собственные функции, тем не менее по выполняемой работе они сходны.

Роль плазмалеммы:

  1. Барьерная. Эта функция является основной и выполняется всеми видами клеточных мембран. Особенно она важна для наружной оболочки: благодаря ей клетка поддерживает форму, гомеостаз, стабильность внутреннего содержимого, целостность.
  2. Транспортная. Второе важнейшее назначение — активный и пассивный перенос веществ изнутри клетки в наружную среду и обратно. Механизмы этого переноса самые разнообразные, транспорт может происходить как через каналы, образуемые пронизывающими молекулами белков, так и с помощью переносчиков. Также различают пассивное (по градиенту концентрации, например диффузия газов), и активное (против градиента, с затратой выработанной клеткой энергии).
  3. Рецепторная. Эта роль возложена на пронизывающие белки, которые особым образом связаны с углеводными цепочками (гликополисахаридами). Образовавшиеся таким образом рецепторы, которые по своему строению и являются гликопротеидами, образуют комплекс с гормонами, затем активируются катализаторы, и такая система запускает механизмы поступления или вывода различных веществ.
  4. Обмен информацией. Способность клетки контактировать оболочками, обмениваясь друг с другом информацией сродни рецепторным реакциям. Благодаря им происходит стимуляция роста или торможения и иные физиологические процессы. Такой контакт может быть механическим (простое или замковое смыкание оболочек) и при помощи специальных образований — синапсов. Передающиеся через синапсы сигналы могут быть как механическими, так и электрическими.
  5. Энергетическая. Плазмалемма митохондрий и пластид (хлоропластов) отвечает за синтез аденозинтрифосфорной кислоты — аккумулятора клеточной энергии.

Особо следует отметить эндо- и экзоцитоз. Вследствие этих мембранных механизмов в клетку могут поступать не только целые молекулы больших размеров, но и неизмененные, сторонние клетки. Примером эндоцитоза (обволакивания крупных частиц или капель жидкости, втягивание внутрь цитоплазмы и дальнейшая химическая дезактивация) может служить поглощение вредных и чужеродных молекул лейкоцитами.

Экзоцитоз — обратный транспорт. Благодаря ему ненужные, отработанные вещества окружаются плазмалеммами и выносятся наружу через поры.

Такое множество функций и разнообразие реакций, происходящих как внутри, так и снаружи плазмалеммы, возможно за счет их упорядоченного физико-химического строения.

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Общее представление о функциях цитолеммы

Плазматическая мембрана в том виде, в котором она присутствует в животной клетке, характерна для множества организмов из разных царств. Бактерии и простейшие, чьи организмы представлены одной-единственной клеткой, имеют цитоплазматическую мембрану. А животные, грибы и растения как многоклеточные организмы не утратили ее в процессе эволюции. Однако у разных царств живых организмов цитолемма несколько различается, хотя функции ее все равно одинаковы. Их можно разделить на три группы: на разграничительные, транспортные и коммуникативные.

К группе разграничительных функций относится механическая защита клетки, поддержание ее формы, ограждение от внеклеточной среды. Транспортную группу функций мембрана играет за счет наличия специфических белков, ионных каналов и переносчиков определенных веществ. К коммуникативным функциям цитолеммы стоит отнести рецепторную. На поверхности мембраны существует совокупность рецепторных комплексов, посредством которых клетка участвует в механизмах гуморальной передачи информации

Однако важно еще и то, что плазмолемма окружает не только клетку, но и некоторые ее мембранные органеллы. В них она играет такую же роль, как в случае с целой клеткой

Что такое супердиффузионные мембраны

Диффузионная мембрана – это специальный материал, имеющий двух-, трех- или даже четырехслойную структуру, основу которого составляет нетканый холст. Диффузионные мембраны применяют для защиты утепляющего слоя от проникновения в его толщу испарений. Также, диффузионные мембраны являются превосходной защитой от воды и ветра. При создании крыши, в полном объеме соответствующей всем современным требованиям, каждый застройщик обязательно столкнется с таким понятием, как «кровельный пирог». Для того чтобы крыша выполняла все возложенные на нее функции в течение всего срока эксплуатации, кроме основного кровельного покрытия, необходимо использовать некоторые дополнительные материалы, к числу которых относятся супердиффузионные мембраны. Супердиффузионные мембраны можно использовать при создании кровельного пирога в любой климатической зоне нашей страны. Роль этого дополнительного слоя чрезвычайно важна, так именно его присутствие позволяет снизить силу неблагоприятных воздействий, вызванных экстремальными погодными условиями, а также нивелировать недочеты и ошибки, возникшие в ходе неправильного монтажа кровли. 

викторина

1. Какой тип молекулы образует двойной слой плазматической мембраны?A. ФосфолипидыB. Ионные КаналыC. РибосомыD. Дезоксирибонуклеиновая кислота

Ответ на вопрос № 1

верно. Фосфолипиды образуют двойной слой плазматической мембраны, самопроизвольно располагаясь таким образом, когда они находятся в воде (воде). решение, Ионные каналы также находятся в мембране, но они не ответственны за формирование двойного слоя. Рибосомы и дезоксирибонуклеиновая кислота находятся внутри клетки; рибосомы образуют белки, а дезоксирибонуклеиновая кислота – это ДНК, генетический материал.

2. Какое предложение лучше всего описывает модель «Мозаика жидкости»?A. Плазматическая мембрана позволяет жидкости проходить между внеклеточной жидкостью и цитоплазмой.B. Слишком много жидкости приведет к взрыву клеток животных.C. Компоненты мембраны помещаются на место, как плитки в мозаике.D. Липиды, белки и углеводы плазматической мембраны свободно перемещаются по ее поверхности.

Ответ на вопрос № 2

D верно. Модель Fluid Mosaic описывает жидкоподобное движение липидов, белков и углеводов, которые составляют плазматическую мембрану. Эти компоненты свободно перемещаются по его поверхности.

3. Что НЕ является функцией плазматической мембраны?A. Для генерации энергии для питания клетокB. Для защиты клетки от окружающей средыC. Для облегчения сотовой связиD. Чтобы контролировать скорость определенных молекул, входящих и выходящих из клетки

Ответ на вопрос № 3

верно. Варианты B, C и D являются функциями плазматической мембраны. митохондрия является частью клетки, которая генерирует энергию.

Функции плазматической мембраны

Белки плазматической мембраны выполняют различные функции, а это предопределяет соответствующие функции плазмалеммы: барьерную, транспортную, контактную, рецепторную и ферментативную.

Строение мембраны практически исключает диффузию через нее полярных молекул, в частности ионов. Поэтому плазматическая мембрана выполняет барьерную функцию. Однако через мембрану должна осуществляться транспортировка веществ как внутрь клетки, так и наружу. Это необходимо для снабжения клетки питательными веществами и выведения продуктов обмена.

Различают два типа транспортировки веществ: движение веществ, при котором не расходуется энергия АТФ, называется пассивным; движение, связанное с затратами энергии, называется активным. Самым простым вариантом пассивной транспортировки является простая диффузия (с места с большей концентрацией вещества в места с меньшей ее концентрацией). Таким образом сквозь мембрану проникают прежде всего неполярные молекулы

Так, из неорганических веществ через мембраны хорошо диффундируют кислород и углекислый газ — это имеет важное значение для клеточного дыхания, из органических веществ — стероидные вещества

Транспортировка через мембрану полярных веществ обеспечивают белковые молекулы-переносчики. Этот тип транспортировки играет важную роль в процессе возбудимости нервных и мышечных клеток и подобным процессам. Молекулы-переносчики необходимы для попадания в клетку глюкозы. Пассивное движение веществ с помощью молекул переносчиков называется облегченной диффузией, как она работает показано на рисунке:

Принцип работы внутреннего белка, транспортирующего глюкозу

Иногда необходимо транспортировать вещество с места с меньшей его концентрацией в места, где его концентрация больше. Этот процесс требует затрат энергии, а потому является активным. Примером может быть калий-натриевый насос (Na+К+ — насос):

Принцип работы калий-натриевого насоса

Он обеспечивает выход из клетки ионов натрия и поступления в нее из внеклеточного пространства ионов калия. Работа этого насоса обеспечивает нормальное функционирования клеток, поддерживая на определенном уровне концентрации ионов Na+ и K+ внутри и снаружи мембраны.

Особым типом активного транспорта является цитоз — перемещение веществ в составе мембранных пузырьков. Процесс вывода веществ из клетки в результате слияния везикул с плазматической мембраной называется экзоцитозом. Таким образом из клеток высвобождаются синтезированные в них ферменты, гормоны, медиаторы и др.

Процесс активного поступления твердых и жидких веществ из внешней среды внутрь клетки называется эндоцитозом. Различают пиноцитоз — поглощение жидкостей и фагоцитоз — поглощение вместе с жидкими веществами твердых частиц. Фагоцитоз играет важную роль в поглощении клетками иммунной системы чужеродных клеток и бактерий, а также в питании одноклеточных организмов.

Схемы процессов экзоцитоза (а) и эндоцитоза (б)

У многоклеточных организмов клетки связаны между собой. Такая связь обеспечивают белки, которые как бы «сшивают» две мембраны, формируя межклеточные контакты.

Рецепторная функция заключается в способности реагировать на химические вещества, изменяя при этом функционирование клеток. Источниками таких биологически активных веществ могут быть как другие клетки (гормоны, нейромедиаторы и т.д.), так и окружающая среда (питательные вещества, яды и т.п.). Первым звеном реагирования на наличие химических веществ является рецепторные белки, встроенные в плазмалемму и способные избирательно связываться с другими веществами.

Некоторые белки, встроенные в клеточную мембрану, играют роль ферментов. В частности, они обеспечивают мембранное (пристеночное) пищеварение в кишечнике человека. В прокариотических клетках мембранные белки участвуют в процессах фотосинтеза, запасании энергии путем синтеза АТФ и др.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Белки плазматической мембраны

Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое — 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной — до 50%.

Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.

1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:

  • водородные связи;
  • ионные взаимодействия или солевые мостики;
  • электростатическое притяжение.

Сами периферические белки — растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное — фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.

Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:

  • формирование цитоскелета клетки;
  • поддержание постоянной формы;
  • ограничение излишней подвижности интегральных белков;
  • координация и осуществление транспорта ионов через плазмолемму;
  • могут соединяться с олигосахаридными цепями и участвовать в рецепторной передаче сигналов от мембраны и к ней.

2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также «заякоренными» белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.

3. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь. Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур — формирование ионных каналов для транспорта.

Существует два типа пронизывания липидного слоя:

  • монотопное — один раз;
  • политопное — в нескольких местах.

К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно. По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный — над ним, причем может возвышаться над всей структурой. За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.

Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.

  1. Структурные периферические белки.
  2. Каталитические белки-ферменты (полуинтегральные и интегральные).
  3. Рецепторные (периферические, интегральные).
  4. Транспортные (интегральные).

Транспорт веществ

К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.

Описаны следующие механизмы переноса веществ через плазмолемму:

  1. Пассивный — диффузия и осмос;
  2. Активный;
  3. Транспорт в мембранной упаковке;

Рассмотрим эти механизмы более подробно.

Пассивный

Осмосом называется диффузия через клеточную стенку молекул воды.

Полярные молекулы с большой массой транспортируются с помощью специальных белков — этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.

В процессе переноса белок

В мембранной упаковке

Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков — везикул, которые образует мембрана.

Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.

Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида — пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью. Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.

В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.

Экзоцитоз

Далее стенка вакуоли и плазмолемма

Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.

Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector