Что относится к полисахаридам: химические свойства, состав, применение

Дисахариды и полисахариды

Так же, как и моносахариды, широкое распространение в природе имеют и дисахариды – всем известная сахароза (тростниковый или свекловичный сахар), лактоза (молочный сахар), мальтоза (солодовый сахар). Сам термин «дисахарид» сообщает нам о двух остатках моносахаридов, связанных между собой в молекулах этих органических соединений, получение которых возможно путем гидролиза (разложением водой) молекулы дисахарида.

Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, которые соединены друг с другом за счет взаимодействия двух гидроксильных групп. В процессе образования молекулы дисахарида происходит отщепление одной молекулы воды:

или для сахарозы:

Поэтому молекулярная формула дисахаридов С12H22O11. Образование сахарозы происходит в клетках растений под воздействием ферментов. Но химики нашли способ осуществления многих реакций, являющихся частью процессов, которые происходят в живой природе. В 1953 году французский химик Р.

Лемье впервые осуществил синтез сахарозы, названный современниками «покорением Эвереста органической химии». В промышленности сахароза получается из сока сахарного тростника (содержание 14-16%), сахарной свеклы (16-21%), а также некоторых других растений, таких как канадский клен или земляная груша.

Всем известно, что сахароза представляет из себя кристаллическое вещество, которое имеет сладкий вкус и хорошо растворимо в воде. Сок сахарного тростника содержит углевод сахароза, привычно называемый нами сахаром. Имя немецкого химика и металлурга А. Маргграфа тесно связано с производством сахара из свеклы.

Он был одним из первых исследователей, применивших в своих химических исследованиях микроскоп, при помощи которого им были обнаружены кристаллы сахара в свекольном соке в 1747 году. Лактоза – кристаллический молочный сахар, была получена из молока млекопитающих еще в XVII в. Лактоза является менее сладким дисахаридом, нежели сахароза.

Теперь ознакомимся с углеводами, имеющими более сложное строение – полисахаридами. Полисахариды – высокомолекулярные углеводы, молекулы которых состоят из множества моносахаридов. В упрощенном виде общая схема может быть представлена так:

Теперь сравним строение и свойства крахмала и целлюлозы – важнейших представителей полисахаридов. Структурное звено полимерных цепей этих полисахаридов, формула которых (С6H10O5)n, – это остатки глюкозы. Для того, чтобы записать состав структурного звена (С6H10O5), нужно отнять молекулу воды из формулы глюкозы.

Целлюлоза и крахмал имеют растительное происхождение. Они образуются из молекул глюкозы в результате поликонденсации. Уравнение реакции поликонденсации, а также обратного ей процесса гидролиза для полисахаридов условно можно записать следующим образом:

Молекулы крахмала могут иметь как линейный, так и разветвленный тип строения, молекулы целлюлозы – только линейный. При взаимодействии с йодом крахмал, в отличие от целлюлозы, дает синее окрашивание. Различные функции эти полисахариды имеют и в растительной клетке. Крахмал служит запасным питательным веществом, целлюлоза выполняет структурную, строительную функцию. Стенки растительных клеток построены из целлюлозы.

Углеводы, моносахариды, олигосахариды и полисахариды. Функции углеводов | Биология

Углеводы, моносахариды, олигосахариды и полисахариды. Функции углеводов

Углеводы, моносахариды, олигосахариды и полисахариды. Функции углеводов

Количество углеводов разное в различных типах клеток. У растений их много: в клубнях картофеля – до 90 %, в листьях, семенах, плодах – почти 70 %. В животных клетках их количество незначительно –почти 1 %, иногда до 5 % сухой массы. Углеводы разделяют на три класса: моносахариды, олигосахариды и полисахариды.

Моносахариды или простые сахара (монозы)

Имеют общую структурную формулу СnН2nОn, где n –число от 3 и больше, и не гидролизируются.

По количеству атомов углерода их разделяют на: триозы, имеющие 3 атома, тетрозы –4 атома, пентозы –5 атомов… декозы, имеющие 10 атомов. Могут существовать в двух формах: линейной и циклической.

Циклические –это молекулы моносахаридов с пятью и большим количеством атомов, заключенных в кольцо. Все моносахариды имеют гидроксильные

(-ОН) и прочие полярные группы, поэтому растворяются в воде.

Из триоз в живых организмах имеет значение глицерин и его производные (молочная кислота, пировиноградная кислота).

В природе наиболее распространенными являются гексозы (6 атомов углерода), а именно глюкоза и фруктоза. Глюкоза (виноградный сахар) есть во всех организмах. Она – главный поставщик энергии в клетках, один из регуляторов осмоса. Ее уровень в крови постоянный (около 0,12 %), поддерживается гормонами инсулином и глюкагоном.

Фруктоза (плодовый сахар) есть в сахарной свекле, фруктах, меде и т. п. Галактоза – это пространственный изомер глюкозы. Входит в состав молочного сахара. В состав нуклеиновых кислот и АТФ входят пентозы (5 атомов): рибоза и дезоксирибоза. Моносахариды сладкие на вкус, хорошо растворяются в воде и хорошо кристаллизируются.

Олигосахариды

Олигосахариды (от греч. олигос – маленький). Это полимеры – ди-, три- и тетрасахариды. Наиболее распространенными являются дисахариды, которые образуются путем соединения двух моносахаридов ковалентной (гликозидной) связью с выделение молекулы воды (реакция конденсации). Дисахариды сладкие на вкус, хорошо растворяются в воде и кристаллизируются.

Различают такие дисахариды: сахароза (сахарный, или тростниковый сахар) состоит из остатков глюкозы и фруктозы, эмпирическая формула – С12Н22О11; лактоза (молочный сахар) – из остатков глюкозы и галактозы, является основным источником энергии для детенышей млекопитающих; мальтоза (солодовый сахар) из остатков глюкозы и пр.

Функции углеводов

Энергетическая. Углеводы являются основным источником энергии для организма. При окислении 1 г глюкозы освобождается 17,6 кДж энергии.

Структурная. Входят в состав оболочек растительных клеток, надмембранного комплекса животных клеток. В растениях выполняют также защитную функцию.

Запасание веществ. Запасаются в виде крахмала у растений и гликогена у животных и грибов. При полноценном питании в печени может накапливаться до 10 % гликогена, количество которого при неблагоприятных условиях может снижаться до 0,2 % массы печени.

Защитная функция. Вяжущие секреты – слизи, которые выделяются разными железами, богаты углеводами и их производными (например, глюкопротеидами). Они защищают стенки полых органов (пищевода, желудка, бронхов) от механических повреждений, проникновения вредных бактерий и вирусов.

Молекулярный уровеньУровни организации живого

Виды углеводов

Выделяют три основных вида углеводов:

  • Простые (быстрые) углеводы или сахара: моно- и дисахариды
  • Сложные (медленные) углеводы: олиго- и полисахариды
  • Неусваиваемые, или волокнистые, углеводы определяются как пищевая клетчатка.

Сахара

Различают два вида сахаров:

  • моносахариды — моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза.
  • дисахариды — дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой.

Сложные углеводы

Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи.

Классификация моносахаридов по генетическому ряду D, L

Все моносахариды содержат асимметричные атомы – атомы углерода, связанные с четырьмя разными заместителями. В структурных формулах такие атомы обычно отмечают звездочкой. Наличие асимметрических атомов в веществе обуславливает пространственную изомерию, то есть разное расположение в пространстве групп –ОН и –Н относительно углеродной цепи.

Например, простейший представитель моноз глицериновый альдегид имеет один асимметрический атом углерода и может находиться в виде двух пространственных изомеров. У одного из них группа –ОН расположена справа от углеродной цепи и его навали D-глицериновый альдегид (от лат. dexter – правый). У другого группа –ОН расположена слева и его называют L-глицериновым альдегидом (от лат. leaves — левый).

Все пространственные изомеры моносахаридов также делят на D- и L. Для определения, к какому генетическому ряду относится моносахарид, его пространственное строение сравнивают со строением глицеринового альдегида. Значение имеет конфигурация последнего, считая от альдегидной группы, асимметрического атома углерода.

Если группы –ОН и –Н расположены здесь так же, как у D-глицеринового альдегида, этот моносахарид относят к D-генетическому ряду, если они расположены, как у L-глицеральдегида — то к L-ряду. Подавляющее большинство встречающихся в природе сахаридов относится к D-генетическому ряду.

Количество пространственных изомеров считают по формуле Фишера: N=2n, где n — количество асимметрических атомов углерода.

Классификация простых углеводов

Классификация используется для разделения моносахаридов на отдельные формы. Каждая из них обладает определенными качествами и свойствами, которые могут влиять на состав углеводов.

Видео

Разработаны две формы моносахаридов:

  • открытая;
  • циклическая.

Простые углеводы, имеющие открытую форму, – компоненты, молекулы которых состоят из карбонильной и нескольких гидроксильных групп. Это означает, что они могут быть альдегидоспиртами и кетоноспиртами. Отсюда появились названия «альдозы» и «кетозы». Элементы с циклической формой создают создавать, они замыкаются в кольца. Этот вид вещества считается наиболее устойчивым, по этой причине в природе отмечается высокий уровень циклических моносахаридов. Моносахариды различают по длине углеродной (по количеству атомов углеводов). Именно отсюда появилась систематизация компонентов на триозы, тетрозы, пентозы, гексозы и так далее.

Классификация моносахаридов по генетическому ряду (D, L)

Все моносахариды содержат асимметричные атомы – атомы углерода, связанные с четырьмя разными заместителями. В структурных формулах такие атомы обычно отмечают звездочкой. Наличие асимметрических атомов в веществе обуславливает пространственную изомерию, то есть разное расположение в пространстве групп –ОН и –Н относительно углеродной цепи.

Например, простейший представитель моноз глицериновый альдегид имеет один асимметрический атом углерода и может находиться в виде двух пространственных изомеров. У одного из них группа –ОН расположена справа от углеродной цепи и его навали D-глицериновый альдегид (от лат. dexter – правый). У другого группа –ОН расположена слева и его называют L-глицериновым альдегидом (от лат. leaves — левый).

Все пространственные изомеры моносахаридов также делят на D- и L. Для определения, к какому генетическому ряду относится моносахарид, его пространственное строение сравнивают со строением глицеринового альдегида. Значение имеет конфигурация последнего, считая от альдегидной группы, асимметрического атома углерода.

Если группы –ОН и –Н расположены здесь так же, как у D-глицеринового альдегида, этот моносахарид относят к D-генетическому ряду, если они расположены, как у L-глицеральдегида — то к L-ряду. Подавляющее большинство встречающихся в природе сахаридов относится к D-генетическому ряду.

Количество пространственных изомеров считают по формуле Фишера: N=2n, где n — количество асимметрических атомов углерода.

Основные функции

Основная функция моносахаридов – это предоставление энергии для организма человека. В принципе, такое предназначение у любых углеводов, однако количественная составляющая будет отличаться. Моносахариды в 1 г доставляют в организм 4 ккал. Чтобы человеческий мозг мог работать в стандартном режиме, ему необходимо в сутки не менее 150-200 г сладости

Но всегда важно помнить, что моносахариды не являются обязательным источником энергии, но их функции играют огромную роль для организма:

  • глюкоза – это главный источник энергии для организма;
  • фруктоза принимает участие в обменных реакциях в организме;
  • галактоза содержится в эритроцитах у людей с III группой крови;
  • рибоза – неотъемлемый компонент дезоксирибонуклеиновой кислоты в хромосомах.

Правда о фруктозе.

Два сахара – глюкоза и фруктоза, давайте сравним их вредное влияние на организм при избытке

Таблица.1 Фруктоза и Глюкоза.

Таблица 2. Количество фруктозы, содержащейся во фруктах.

( Цитируется по Dr.Mercola)

Сколько фруктов можно есть?

1) Если уровень инсулина выше 8 мМЕ/л, то фрукты лучше временно не есть, а снизить его.

2) Об инсулине читайте «Инсулин, долгожители, старение, болезни»

3) Если уровень мочевой кислоты выше 5,5 мг / дл , то фрукты лучше не есть (кроме авокадо), пока не снизите его.

Об уровне мочевой кислоты читайте «Воспаление, как его определить и контролировать».

4) Больным сахарным диабетом (с учетом первых двух пунктов) выбирать, и есть такие порции фруктов, чтобы фруктоза не превышала в них в день 15 граммов.

Выбирайте фрукты и их дневные порции и наслаждайтесь на здоровье!

Почему надо знать содержание фруктозы во фруктах?

Средняя оценка: из

ul

Переваривание углеводов

Переваривание углеводов, особенно крахмала, начинается в полости рта под воздействием фермента, содержащегося в слюне – α-амилазы слюны. Процесс идет только при щелочном pH, оптимум pH 6,0–7,0). Здесь крахмал гидролизуется до мальтозы, мальтотриозы и декстринов. 

Попадая в желудок, пища приобретает кислую среду, в которой амилаза слюны инактивируется. В желудке происходит только частичный гидролиз дисахаридов сахарозы и мальтозы. Дальнейшее переваривание углеводов происходит в тонком кишечнике. 

Гидролиз дисахаридов

В двенадцатиперстной кишке пищеварение происходит при участии α-амилазы поджелудочной железы – углеводы гидролизуются до декстринов и дисахаридов. Кишечный сок содержит ферменты: глюкоамилазу и гликозидазы, а также лактазу, сахаразу и мальтазу, которые переваривают углеводы в простые сахара. 

Около 50% глюкозы уже всасывается в двенадцатиперстной кишке, а остальная часть из тощей кишки попадает в кровь в воротной вене. Поглощенные простые сахара попадают в печень через кровоток. Там большая часть гексоз превращается в глюкозу – часть попадает в кровоток, часть окисляется в печени, а часть превращается в гликоген, сохраняясь в качестве резервного материала.

Биохимические свойства

От функциональных групп моносахаридов зависят и их свойства. Соответственно, они могут вступать в реакции окисления и восстановления.

В результате окисления моносахаридов создаются разные классы кислот. Альдоновые кислоты – последствие окисления альдегидной группы С1 –атома до карбоксильной группы. Альдаровые кислоты возникают после окисления альдегидной группы или первичной спиртовой С6– атома углерода. Альдуроновая кислота создается вследствие окисления первичной спиртовой группы С6-углерода.

Восстановление моносахаридов под воздействием ферментов или других веществ сопровождается образованием полиспиртов, например, сорбитола или рибитола. Последний, кстати, является компонентом .

Строение и функции углеводов

Что относится к углеводам и какие физические свойства углеводов — вопросы, на которые многие получили ответ еще в школе. Однако со временем многие подзабыли основные понятия и поэтому не лишним будет напомнить что это такое, структуру и характеристику углеводов.

Краткая классификация и состав углеводов представлены ниже.

Моносахариды (монозы)

Наиболее простые представители группы углеводов.

Моносахариды (монозы)

Твердые соединения органической природы. Являются бесцветными и прозрачными, легкорастворимы в воде, плохо растворяются в спирте. Некоторые из них имеют сладковатый вкус.

Моносахара по своей структуре также подразделяются в зависимости от наличия в формуле определенных функциональных групп:

  • при наличии в нуклеотидной цепи альдегидной или карбонильной группы углевод называется альдозой;
  • если в углеродной цепи расположена кетогруппа — сахар называется кетозой.

Кроме того, монозы классифицируются по длине углеродного скелета: триозы (три атома Карбона), тетрозы (четыре атома Карбона), пентозы (пять атомов Карбона), гексозы (шесть атомов Карбона). Наиболее распространенными в природе являются два последних представителя.

Моносахариды являются основой для образования дисахаридов, олигосахаридов и полисахаридов. Наиболее распространенной считается глюкоза, которая является неотъемлемой частью множества более сложных углеводов, таких, как мальтоза, лактоза и сахароза, крахмал и целлюлоза. Гораздо реже встречается фрутоза.

Дисахариды

Как понятно из названия, дисахариды состоят из двух молекул одинаковых или разных моносахаридов, соединенных между собой гликозидной связью.

Твердые вещества кристаллической структуры, имеющие белый или коричневатый цвет, хорошо растворяются в воде и спирте, сладкие на вкус. Довольно широко распространены в живой природе: в свободном состоянии в качестве продуктов гидролиза полисахаров, в основе гликозидов.

Важно! В организме человека выполняют функцию снабжения энергией, поставляя в клетки глюкозу. К основным представителям класса относится:

К основным представителям класса относится:

  • лактоза — питательное вещество в организма человека и животных;
  • мальтоза;
  • целлобиоза – структурная единица целлюлозы;
  • сахароза;
  • трегалоза.

Все они играют огромную роль в жизнедеятельности человека и животных.

Дисахариды

Олигосахариды

Особенность строения данных углеводов — наличие в своей химической структуре от 3 до 10 моносахаридов.

Наиболее распространенной является рафиноза, содержащая в себе остатки глюкозы, галактозы и фруктозы. Её в больших количествах можно найти в сахарной свекле.

Полисахариды

Что входит в эти углеводы? Они состоят из десятков, а то и тысяч молекул моносахаридов.

Их функцию для человеческого организма трудно переоценить. Так, они выполняют энергетическую функцию, являясь единственным источником необходимых килоджоулей.

Для справки: при разложении 1 грамма полисахарида выделяется 17,6 кДж энергии.

Они распадаются до моносахаров, которые, в свою очередь, разлагаются до углекислого газа и воды. Представленные углеводы являются структурным компонентом клеточной стенки и некоторых органелл.

В растениях полисахариды выступают в качестве опорного материала. Также, они способны накапливаться в растительных тканях в виде крахмала и в животных в виде гликогена.

Важно! Огромное значение для организма человека имеет полисахарид гликоген. Он служит для формирования запасов энергии, которая при любых физических нагрузках тратится в первую очередь

Гликоген является более доступным, нежели триглицериды. Его можно найти во всех жизненно важных органах — почках, печени, головном мозге, мышцах. Также он находится в эритроцитах.

Химические свойства глюкозы

Химические свойства глюкозы, как и любого другого органического вещества, определяются ее строением. Глюкоза обладает двойственной функ­цией, являясь и альдегидом, и многоатомным спиртом, поэтому для нее характерны свойства и много­атомных спиртов, и альдегидов.

Реакции глюкозы как многоатомного спирта.

Глюкоза дает качественную реакцию много­атомных спиртов (вспомните глицерин) со свеже­полученным гидроксидом меди (II), образуя ярко­-синий раствор соединения меди (II).

Глюкоза, подобно спиртам, может образовывать сложные эфиры.

Реакции глюкозы как альдегида

1. Окисление альдегидной группы. Глюкоза как альдегид способна окисляться в соответствующую (глюконовую) кислоту и давать качественные ре­акции альдегидов.

Реакция «серебряного зеркала»:

Общая характеристика

Название «моносахариды» с греческого переводится как «одиночный сахар». Эти простые углеводы состоят из одного элемента и не могут быть разбиты на более мелкие блоки. Моносахариды являют собой самую простую форму углеводов, но они могут объединяться, образовывая более сложные соединения. Например, 2 моносахарида создают дисахариды, соединение от 3 до 10 элементов – это уже олигосахариды, а 11 больше моносахаридов, связанных воедино, образуют полисахариды.

Исследователям впервые удалось получить глюкозу в 1811 году: русский ученый Константин Сигизмунд гидролизовал это вещество из крахмала, а через 33 года другой русский ученый К. Шмидт придумал углеводам их название.

В пище моносахариды представлены 3 веществами: глюкозой, фруктозой, галактозой.

В природе простейшие углеводы обычно представлены в форме глюкозы.

Все они обладают общей формулой – С6Н12О6. И поскольку каждый из них имеет в составе 6 атомов углерода, принадлежат к гексозной группе. Меж тем, несмотря на общую молекулярную формулу, расположение атомов в каждом из этих веществ отличается. Это позволяет называть их структурными изомерами.

Суточная норма

Ученые доказали, что «glucosa» относится к моносахаридам, но глюкозное звено присутствует в ди- и полисахаридах. Открыть этот вид углевода удалось врачу и химику из Лондона Уильяму Прауту в начале XIX века. Проведенные со временем эксперименты показали, что глюкоза — главный источник энергии в живых организмах. При этом содержится вещество в крахмале растений и мышечном гликогене.

Суточная норма глюкозы зависит от веса человека. Так, при массе в 70-75 килограмм организм нуждается в 180-190 граммах вещества. При этом 70% забирают клетки головного мозга и по 15% — эритроциты крови и мышцы. Что касается остальных частей тела, то для них источником энергии считается жир.

Для точного расчета суточной потребности в глюкозе рекомендуется 2,6 грамма умножить на текущий вес. Но это средний показатель. Потребность в моносахариде возрастает:

  • При активной мозговой и физической деятельности, требующей высоких затрат энергии. Вот почему работникам некоторых профессий рекомендуется повышенная норма глюкозы.
  • При наличии проблем с ЖКТ, связанных с ухудшением усваиваемости моносахарида.

Бывают ситуации, когда потребление глюкозы стоит ограничить. К таким случаям стоит отнести:

  • склонность к диабету;
  • малоподвижный образ жизни, который не связан с умственными нагрузками.

Чтобы избежать переизбытка или дефицита, стоит знать, где содержится глюкоза и в каких продуктах ее больше всего. В этом случае легче регулировать рацион. Стоит также учесть, что рассматриваемый элемент — «быстрый» углевод, который в случае неиспользования оседает в виде жира.

Дисахариды и полисахариды

Так же, как и моносахариды, широкое распространение в природе имеют и дисахариды – всем известная сахароза (тростниковый или свекловичный сахар), лактоза (молочный сахар), мальтоза (солодовый сахар). Сам термин «дисахарид» сообщает нам о двух остатках моносахаридов, связанных между собой в молекулах этих органических соединений, получение которых возможно путем гидролиза (разложением водой) молекулы дисахарида.

Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, которые соединены друг с другом за счет взаимодействия двух гидроксильных групп. В процессе образования молекулы дисахарида происходит отщепление одной молекулы воды:

или для сахарозы:

Поэтому молекулярная формула дисахаридов С12H22O11. Образование сахарозы происходит в клетках растений под воздействием ферментов. Но химики нашли способ осуществления многих реакций, являющихся частью процессов, которые происходят в живой природе. В 1953 году французский химик Р.

Лемье впервые осуществил синтез сахарозы, названный современниками «покорением Эвереста органической химии». В промышленности сахароза получается из сока сахарного тростника (содержание 14-16%), сахарной свеклы (16-21%), а также некоторых других растений, таких как канадский клен или земляная груша.

Всем известно, что сахароза представляет из себя кристаллическое вещество, которое имеет сладкий вкус и хорошо растворимо в воде. Сок сахарного тростника содержит углевод сахароза, привычно называемый нами сахаром. Имя немецкого химика и металлурга А. Маргграфа тесно связано с производством сахара из свеклы.

Он был одним из первых исследователей, применивших в своих химических исследованиях микроскоп, при помощи которого им были обнаружены кристаллы сахара в свекольном соке в 1747 году. Лактоза – кристаллический молочный сахар, была получена из молока млекопитающих еще в XVII в. Лактоза является менее сладким дисахаридом, нежели сахароза.

Теперь ознакомимся с углеводами, имеющими более сложное строение – полисахаридами. Полисахариды – высокомолекулярные углеводы, молекулы которых состоят из множества моносахаридов. В упрощенном виде общая схема может быть представлена так:

Теперь сравним строение и свойства крахмала и целлюлозы – важнейших представителей полисахаридов. Структурное звено полимерных цепей этих полисахаридов, формула которых (С6H10O5)n, – это остатки глюкозы. Для того, чтобы записать состав структурного звена (С6H10O5), нужно отнять молекулу воды из формулы глюкозы.

Целлюлоза и крахмал имеют растительное происхождение. Они образуются из молекул глюкозы в результате поликонденсации. Уравнение реакции поликонденсации, а также обратного ей процесса гидролиза для полисахаридов условно можно записать следующим образом:

Молекулы крахмала могут иметь как линейный, так и разветвленный тип строения, молекулы целлюлозы – только линейный. При взаимодействии с йодом крахмал, в отличие от целлюлозы, дает синее окрашивание. Различные функции эти полисахариды имеют и в растительной клетке. Крахмал служит запасным питательным веществом, целлюлоза выполняет структурную, строительную функцию. Стенки растительных клеток построены из целлюлозы.

Для чего нужны простые углеводы?

Основная функция легких углеводов — энергетическая. Включение в рацион продуктов, содержащих рассматриваемые вещества, способствует быстрому восстановлению сил после физических, умственных нагрузок.

В перечне важных свойств моносахаридов:

  • укрепление иммунной системы;
  • улучшение работы ЖКТ, нервной системы, сердца;
  • выведение токсинов;
  • активизация процессов усвоения кальция, аскорбиновой кислоты;
  • минимизация риска возникновения депрессий.

Из простых сахаров человеческий организм синтезирует гликолипиды, нуклеополисахариды, гликопротеины, другие соединения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector